1.5 notes (part 2)

Extraneous solution:

a solution that emerges from the process of solving an equation but is not valid.

1.5 notes (part 2)

$$
4 \sqrt{2 y-1}-2=0
$$

Solving a radical equation:

 1. isolate the radical(s)2. square (or cube) both sides 3. combine like terms and set $=0$ 4. factor and solve

$$
\sqrt[3]{2 x+1}+5=8
$$

$$
\sqrt{5 x-1}-2 \sqrt{x+1}=0
$$

1.5 notes (part 2)

Factor and solve:

$$
x^{4^{4}}+3 x^{2}-10=0
$$

$$
\begin{aligned}
& \text { think: } \\
& x^{2}+3 x-10 \\
& (x+5)(x-2)
\end{aligned}
$$

$$
\left(x^{2}+5\right)\left(x^{2}-2\right)=0
$$

$$
x^{2}+5=0 \quad x^{2}-2=0
$$

$x^{2}= \pm \sqrt{2}$
x^{2}

$$
x^{2}=2
$$

no real (extraneous)
solution
5. $\sqrt{2 x}+x^{\prime}=0$
isolate variable,
$-2 x-x$
$\sqrt{2 x}=-x$
$(\sqrt{2 x})^{2}=(-x)^{2}$
$2 x=x^{2}$
$0=x^{2}-2 x$
$0=x(x-2)$
then square
both sides to
maintain proper
order of operations

Gather like terms,
Keep leading term positive so it is
easier to factor
makes original equation false
7. $\left[\frac{3}{(x)}+\frac{5}{(x+2)}=\frac{2}{(1)}{ }^{x}(x+2)\right.$

$$
\begin{array}{lc}
& 0=2 x^{2}-4 x-6 \\
3(x+2)+5 x=2 x(x+2) & 0=2\left(x^{2}-2 x-3\right) \\
3 x+6+5 x=2 x^{2}+4 x \\
8 x+y & =2 x^{2}+4 x-6 \\
-8 x+6 & 0=2(x-3)(x+1) \\
\downarrow & x=3 x
\end{array}
$$

90. $\left(\frac{x+5}{x-2}\right)=\left(\frac{5}{x+2}+\frac{28}{\left.\left.x_{\substack{\text { same as } \\(x+2)(x-2)}}^{(x+2(x-2)}\right)^{(x+2)(x-2)}\right) .}\right.$

$$
\begin{aligned}
& (x+2)(x+5)=5(x-2)+28 \\
& x^{2}+7 x+10=5 x-10+28 \\
& x^{2}+7 x+10=5 x+18 \\
& -5 x-18-5 x-88 \\
& x^{2}+2 x-8=0 \\
& (x+4)(x-2)=0
\end{aligned}
$$

$x=-4>\ll$ makes denominator zero, extraneous so original equation is undefined.

$$
\text { 98. } \begin{aligned}
& \sqrt{4} \\
& (\sqrt{5-x}+\chi=x-2 \\
& (\sqrt{5-x})^{2}=(x-3)^{2} \\
& 5-x=x^{2}-6 x+9 \\
& 0=x^{2}-5 x+4 \times(x-3)(x-3) \\
& 0=(x-4)(x-1) \quad x=4 \quad \sqrt{4}+1=1-2 \\
& 2+1+1
\end{aligned}
$$

1.5 check even answers:

90. $x=-4$ only
$x=2$ makes the fraction undefined
so it is an extraneous solution
91. factor to get $\left(x^{2}-4\right)\left(x^{2}-1\right)=0$
then solve $\rightarrow \mathrm{x}= \pm 2$

$$
x= \pm 1
$$

106. factor to get $\left(x^{3}-3\right)\left(x^{3}+1\right)=0$
then solve $\rightarrow x=\sqrt[3]{3}$

$$
x=-1
$$

